
Tetris: Efficient and Predictive KV Cache Offloading for Agentic
and Reasoning Workloads

Ziji Shi∗
ziji.shi@u.nus.edu

National University of Singapore
Singapore, Singapore

Chaoyi Ruan
ruancy@comp.nus.edu.sg

National University of Singapore
Singapore, Singapore

Penghui Qi
Guangxing Huang

{qiph,huanggx}@sea.com
Sea AI Lab

Singapore, Singapore

Xinyi Wan
Min Lin

{wanxy,linmin}@sea.com
Sea AI Lab

Singapore, Singapore

Jialin Li
lijl@comp.nus.edu.sg

National University of Singapore
Singapore, Singapore

Abstract
Inference-time scaling and tool-calling enhance LLM reasoning and
agentic capabilities but greatly increase key–value (KV) cache usage,
especially for long intermediate reasoning steps and API call histo-
ries. While prior work has addressed long input handling, long out-
put scenarios remain underexplored. We identify cascading preemp-
tion, where successive preemptions occur due to uninformed victim
selection, degrading time-per-output-token (TPOT) performance.
We present Tetris, an inference system for agentic and reasoning
workloads that mitigates cascading preemption through (1) light-
weight per-token sequence length prediction, (2) trade-off–driven
recomputation vs. offloading, and (3) layerwise asynchronous KV
cache transfer with predictive scheduling. Our analysis shows that
offloading is asymptotically more efficient for long sequences, and
our implementation in vLLM significantly reduces preemption fre-
quency and improves P99 TPOT in memory-constrained settings.

1 Introduction
Inference-time scaling and tool-calling have augmented the capabil-
ity of LLMs at the expense of more KV cache usage. Compared with
base LLMs, models after CoT fine-tuning can think and self-reflect
when working on challenging problems. Similarly, AI agents can
break down a task into smaller sub-tasks and call external tool to
update the internal knowledge. The interaction with external tools
usually takes the form of textual input and output. Both workloads
are characterized by having longer intermediate steps (reasoning
tokens/ API-calling history) before reaching the final conclusion,
creating a KV-cache hungry scenario. On conversational datasets
like LMSYS-chat-1M or ShareGPT, the average output lengths are
182 and 456 tokens; but this number can be increased to hundreds
of thousands on reasoning datasets like NuminaMath or agentic
workload like SWEBench. While the long input case have been well
studied in existing literature [5, 8, 9], the long output scenario is
less studied.

Longer output sequence leads to higher likelihood of preemp-
tion which degrades the service rendered. When the serving system
runs out of memory due to high KV cache usage, it must make a
preemption decision that either offloads or recomputes a running
∗Work done while doing an internship at Sea AI Lab.

0 1000 2000 3000 4000
Iteration

0

50

100

150

200

Pr
ee

m
pt

io
n 

Co
un

t

Preemption Count
VRAM Usage
RAM Usage
100%

0

20

40

60

80

100

KV
 C

ac
he

 U
sa

ge
 (%

)

Memory Usage and Preemption

Figure 1: Cascading preemptions happened between iteration
1500 to 2000 and iteration 2900 - 3100.

sequence to recover KV cache. Because of the interruption, the cho-
sen sequence (also called victim sequence) will suffer from violated
token generation time metric like time-per-output-token (TPOT).

Furthermore, we observe a phenomenon that we name cascading
preemption where multiple preemptions happen one after another
within a short period of time. As shown in Figure. 1, we observe
that the inference system is already under high GPU memory us-
age when the first preemption happens. Afterwards, the running
sequences will take over the GPU memory freed by the preempted
sequence. However, the remaining requests may use more KV cache
than the chosen victim sequence can provide, and subsequent pre-
emptions are required to free new GPU memory. This cascading
preemption phenomenon is the result of uninformed victim selec-
tion policy, in which the future KV cache demand is not known
and the victim selection is merely a random guess. We argue that
sequence length prediction is necessary for best-fit victim selection.

In this paper, we present Tetris, an LLM inference system built
for agentic and reasoning LLM workloads. Tetris uses layerwise
KV cache transfer, compute-offload overlapping, and predictive
scheduling to leverage the spare main memory for long output
sequence generation.

Our contributions are three-folds:

https://orcid.org/1234-5678-9012


SOSP ’25, October 13–16, 2025, Seoul, South Korea Shi et al.

• We systematically investigate the cascading preemption phe-
nomenon and show that the root cause is the lack of pre-
dictability of future sequence length, and we employ a light-
weight model for online sequence length prediction;

• We present a trade-off analysis between recomputation and
swapping as preemption mechanism, and show that swap-
ping is more effective in long sequence inference;

• We present Tetris, which optimizes the blocking swapping
operation with layerwise asynchronous KV cache transfer
and predictive scheduling, significantly reducing the pre-
emption frequency and P99 TPOT performance.

2 Approach
2.1 Recomputation and Offloading Trade-off
Recomputation involves freeing KV cache immediately and adding
the victim request to pending queue for recomputation later. Al-
though it can immediately release the memory, it wastes the GPU
cycle when running the prefilling phase again. Offloading involves
transferring the victim KV cache to main memory and reloading it
back later. Because GPU memory is only available after swapping,
the swapping operation will block the inference process.

We analyse the cost of KV cache recomputation and offloading
using a white-box performance model inspired by PipeOffload [7].
Let 𝑆 be the output sequence length, 𝐷𝑚 be model dimension, and
𝐿 be number of layers. We also denote the compute capability
using 𝐵𝑐𝑜𝑚𝑝 and host-device bandwidth as 𝐵𝑚𝑒𝑚 . The costs of
recomputation and offloading for decoder-based LLM are:

𝐿𝑟𝑒𝑐𝑜𝑚𝑝 =
𝐹𝐿𝑂𝑃𝑆

𝐵𝑐𝑜𝑚𝑝
= 4𝐿 · 6𝑆𝐷

2
𝑚 + 𝑆2𝐷𝑚
𝐵𝑐𝑜𝑚𝑝

(1)

𝐿𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑 = 2
𝑆𝑖𝑧𝑒𝑜 𝑓 𝐾𝑉

𝐵𝑚𝑒𝑚
=
𝑆𝐷𝑚𝐿

𝐵𝑚𝑒𝑚
(2)

Obviously, offloading is𝑂 (𝑆) while recomputation is𝑂 (𝑆2), mak-
ing offloading the better options for long sequence generation. But
when is the breakeven point? We define 𝐾 as the breakeven se-
quence length when 𝐿𝑟𝑒𝑐𝑜𝑚𝑝

𝐿𝑜𝑓 𝑓 𝑙𝑜𝑎𝑑
= 1, therefore

𝐾 = 2
𝐵𝑐𝑜𝑚𝑝

𝐵𝑚𝑒𝑚
− 6𝐷𝑚 (3)

When 𝑆 > 𝐾 , offloading is preferred; otherwise, recomputation
is less costly. As we can observe, offloading is preferred on larger
model dimension and longer sequence length. Notice that K depends
on both model architecture and actual hardware. On Llama3-8B
with Nvidia A100 80GB GPU assuming 80% FLOPs utilization rate
and 50% PCI-e bus utilization rate, K is negative, indicating a strong
preference for offloading.

2.2 Online Sequence Length Prediction
Another challenge lies in the variance of output sequence length.
Due to the auto-regressive nature, the total length is only revealed
after the eos token gets selected. Existing works mainly use an
ahead-of-time (AOT), proxy-LLM-based approach that either di-
rectly predicts the total output length (hard label)[3, 6, 11] or the
relative lengths of output sequences (soft label) [2]. While the LLM-
proxy method is straightforward, it lacks the flexibility to adapt to

Model 
Runner

Seq Length
Predictor

Scheduler KV Cache 
Manager

GPU 
RAM

RAM

Schd. Input

Worker 
0

Hidden States

Worker 
N-1

Read/Write

Length Predictions

Query

…

Preemption
Handler

Worker 
1

Figure 2: System architecture of Tetris.

workload variation, and the LLM-based prediction can be computa-
tionally heavy. In agentic or reasoning workloads, output length
can change dramatically depending on the task complexity, and
AOT prediction may not yield an accurate answer. Instead, we
leverage recent insight that LLM’s hidden states encode the struc-
tural information including future output length [1] and build an
multi-layer-perceptron (MLP) based model. This MLP-based model
contains 302K parameters, which is 1% of LLM-based model predic-
tionmethods. This enables us to update the output length prediction
on a per-token level, and allows us to adapt to new workloads by
online updating the MLP model. Our preliminary evaluation shows
better performance compared to the state-of-the-art AOT prediction
model.

2.3 Layerwise Asynchronous KV Cache
Transfer

Currently, both vLLM[4] and SGLang[10] implement KV cache
offloading in a synchronous manner: preempted KV cache must
be transferred to main memory before they can be used by others,
which stalls GPU from progressing. We identify two opportunities
to mitigate this blocking operation.

Firstly, KV cache transfer can be made in layerwise fashion. In-
stead of copying the KV cache at the very end of forward pass, Tetris
starts copying once the current layer’s KV cache are computed. This
overlaps the device-to-host computation with subsequent feedfor-
ward computation.

Secondly, Tetris starts cache transfer ahead of scheduled preemp-
tion thanks to sequence length prediction. Tetris can detect future
preemption by comparing future KV cache demand with available
memory, and start offloading in asynchronous fashion before pre-
emption actually happens. This in-flight offloading enables Tetris to
evict victim sequence without interrupting generation, minimizing
amount of KV cache required to copy when preemption happens.
The same works when reloading KV cache from main memory to
GPU, where Tetris early starts the reloading process to minimize
GPU downtime.

Implementing layerwise asynchronous KV cache copy is a non-
trivial task because it requires careful coordination of barriers. Also,



Tetris: Efficient and Predictive KV Cache Offloading for Agentic and Reasoning Workloads SOSP ’25, October 13–16, 2025, Seoul, South Korea

transferring KV cache in layerwise fashion means each tensor trans-
ferred is small. We implement a packing mechanism that packs
small tensors on the batch dimension to amortize the offloading
cost.

3 Implementation
Tetris was implemented on vLLM v0.8.3. As shown in Figure 2,
scheduler queries the KV cache availability and future sequence
length to select victims and make input batches. Afterwards, the
scheduled input is passed to model runner for execution. To min-
imize interference, the actual KV cache transfer takes place on a
dedicated CUDA stream and pinned memory while each worker
performing decoding step on another stream. After decoding step is
finished, the sequence length prediction can be updated with fresh
hidden states intercepted from chosen layer. The predicted request
length and actual length statistics are saved for model update later.

4 Future Work
We identify three areas as future work. Firstly, better scheduling
algorithm (best-fit) can be co-designed with sequence length predic-
tion. Secondly, KV cache migration between multiple data-parallel
inference workers can be considered on top of local offloading. Last
but not least, Tetris can be extended to offload to remote cache
server/SSD for even longer sequences, which are common for agen-
tic workloads.

5 Conclusion
We present the design of Tetris, a predictive KV cache offload-
ing framework for agentic and reasoning workloads. We identify
the problem of cascading preemption during long output decod-
ing tasks, which arises from uninformed victim selection under
tight GPU memory budgets. Tetris addresses this through three
elements: (1) online per-token sequence-length prediction with a
small MLP-based model, (2) an analytic rule that chooses between
recomputation and offloading based on a closed-form break-even
length, and (3) layerwise, asynchronous KV cache transfer that
overlaps device–host I/O with compute. Across agentic traces and
synthetic long-output workloads, Tetris reduces the frequency of
preemptions and improves P99 time-per-output-token under mem-
ory pressure, while maintaining throughput.

References
[1] Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, and Chaochao Lu.

2025. Emergent Response Planning in LLM. doi:10.48550/arXiv.2502.06258
arXiv:2502.06258 [cs].

[2] Yichao Fu, Siqi Zhu, Runlong Su, Aurick Qiao, Ion Stoica, and Hao Zhang. 2024.
Efficient LLM Scheduling by Learning to Rank. doi:10.48550/arXiv.2408.15792
arXiv:2408.15792 [cs].

[3] Yunho Jin, Chun-Feng Wu, David Brooks, and Gu-Yeon Wei. 2023. 𝑆3: Increasing
GPU Utilization during Generative Inference for Higher Throughput. Advances
in Neural Information Processing Systems 36 (2023), 18015–18027.

[4] Wonkyung Kwon, Ying Sheng, Siyuan Li, Zhiqiang Xie, Christos Kozyrakis,
Joseph E. Gonzalez, and Ion Stoica. 2023. Efficient Memory Management for
Large Language Model Serving with PagedAttention. In Proceedings of the 29th
ACM Symposium on Operating Systems Principles (SOSP). arXiv:2309.06180 [cs.LG]
doi:10.1145/3600006.3613165

[5] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring Attention with Blockwise
Transformers for Near-Infinite Context. arXiv preprint arXiv:2310.01889 (2023).
https://arxiv.org/abs/2310.01889

[6] Haoran Qiu, WeichaoMao, Archit Patke, Shengkun Cui, Saurabh Jha, ChenWang,
Hubertus Franke, Zbigniew T Kalbarczyk, Tamer Başar, and Ravishankar K Iyer.

2024. Efficient interactive llm serving with proxy model-based sequence length
prediction. arXiv preprint arXiv:2404.08509 (2024).

[7] Xinyi Wan, Penghui Qi, Guangxing Huang, Min Lin, and Jialin Li. 2025. PipeOf-
fload: Improving Scalability of Pipeline Parallelism with Memory Optimization.
arXiv preprint arXiv:2503.01328 (2025).

[8] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu, and Xin Jin.
2024. LoongServe: Efficiently Serving Long-Context Large Language Models with
Elastic Sequence Parallelism. In Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles. ACM, Austin TX USA, 640–654. doi:10.1145/
3694715.3695948

[9] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2023.
Efficient Streaming Language Models with Attention Sinks. arXiv preprint
arXiv:2309.17453 (2023). https://arxiv.org/abs/2309.17453

[10] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang,
Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez,
Clark Barrett, and Ying Sheng. 2024. SGLang: Efficient Execution of Struc-
tured Language Model Programs. In Advances in Neural Information Processing
Systems (NeurIPS). https://proceedings.neurips.cc/paper_files/paper/2024/file/
724be4472168f31ba1c9ac630f15dec8-Paper-Conference.pdf

[11] Zangwei Zheng, Xiaozhe Ren, Fuzhao Xue, Yang Luo, Xin Jiang, and Yang You.
2023. Response length perception and sequence scheduling: An llm-empowered
llm inference pipeline. Advances in Neural Information Processing Systems 36
(2023), 65517–65530.

https://doi.org/10.48550/arXiv.2502.06258
https://doi.org/10.48550/arXiv.2408.15792
https://arxiv.org/abs/2309.06180
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2310.01889
https://doi.org/10.1145/3694715.3695948
https://doi.org/10.1145/3694715.3695948
https://arxiv.org/abs/2309.17453
https://proceedings.neurips.cc/paper_files/paper/2024/file/724be4472168f31ba1c9ac630f15dec8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/724be4472168f31ba1c9ac630f15dec8-Paper-Conference.pdf

	Abstract
	1 Introduction
	2 Approach
	2.1 Recomputation and Offloading Trade-off
	2.2 Online Sequence Length Prediction
	2.3 Layerwise Asynchronous KV Cache Transfer

	3 Implementation
	4 Future Work
	5 Conclusion
	References

